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Abstract— Training a policy that can generalize to unknown
objects is a long standing challenge within the field of robotics.
The performance of a policy often drops significantly in
situations where an object in the scene was not seen during
training. To solve this problem, we present NeRF-Aug, a novel
method that is capable of teaching a policy to interact with
objects that are not present in the dataset. This approach
differs from existing approaches by leveraging the speed and
photorealism of a neural radiance field for augmentation. NeRF-
Aug both creates more photorealistic data and runs 3.83 times
faster than existing methods. We demonstrate the effectiveness
of our method on 4 tasks with 11 novel objects that have
no expert demonstration data. We achieve an average 69.1%
success rate increase over existing methods. See video results
at https://nerf-aug.github.io.

I. INTRODUCTION

Humans have an innate ability to interact with objects
they have never encountered before. For instance, a person
can intuitively approach an unknown object, pick it up,
and interact with it. This is in stark contrast to existing
robotic systems. For a robot, even the slightest differences
in shape or color from the objects seen during training can
prevent the robot from achieving success. This challenge of
generalization to out-of-distribution samples is a fundamental
issue in machine learning and robotics.

Many prior works have explored methods to develop
policies for robots that generalize to different objects. A
straightforward approach is to simply collect demonstrations
involving the novel object. However, this method has sig-
nificant drawbacks because creating expert demonstrations
is time-consuming and expensive as it requires a human
to consciously control the robot’s movements. Collecting
such human demonstrations is unfeasible at scale as every
new object potentially requires many new demonstrations.
Another approach is to use image editing tools, e.g., the latest
diffusion-based image editing [1–5]. While these models
can effectively edit images to insert new objects, they are
often slow and struggle to render the exact object that will
be encountered by the robot. This inaccuracy means the
current object remains out of the domain of the training set
which often causes these models to fail. Alternatively, some
pipelines use depth images for object manipulation [6, 7].
Unfortunately, depth images in the real world suffer from
noise and incompleteness [7]. This issue is exacerbated
when using mounted gripper cameras, which amplify noise
as they get closer to the object. Moreover, even though
depth images disregard texture and color, small geometric
differences between the original (training) and novel objects
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Fig. 1. When a human provides expert demonstrations for training
a behavior cloning model, the model is effective for the object in the
demonstration, but will fail for novel objects. We propose NeRF-Aug, where
we automatically learn NeRFs for the novel objects and inpaint them in the
expert data. With this photorealistic synthetic data, the robot can learn to
interact successfully with novel objects.

can still result in confusion and failure to complete the
intended task.

In this work, we propose NeRF-Aug, a lightweight frame-
work that streamlines and automates data collection for a
wide range of novel objects. Our goal is to generate data sam-
ples for different tasks using novel objects without collecting
more human demonstrations. To enable this, we follow the
image editing paradigm, but instead of relying on slow
generation frameworks, we propose grounding the editing
process in the scene using the 3D model of a novel object
with a Neural Radiance Field (NeRF) [8] representation. We
augment the training data for the robot’s policy using this
edited scene. Our framework uses existing demonstrations of
a different object and generates NeRF-Augmented (NeRF-
Aug) synthetic data (Fig. 2) that can be used in imitation
learning policies.

We demonstrate that the synthetic data generated by the
NeRF-Aug framework is almost indistinguishable from real-
world data. Moreover, we show that compared to existing
diffusion-based image editing techniques, our method runs
significantly faster, creates photorealistic images, and can
consistently render objects at a wider degree of viewpoints.

https://nerf-aug.github.io


New Dataset 
with Novel Object

Execute Policy On 
Novel Object

Videos from Dataset Segment 
Object of Interaction

Inpaint with 
Off-the-Shelf Inpainter

Camera Pose to World Pose
from Gripper Position

Use NeRF to Render
Novel Object Image Novel Object Render

Blend NeRF Rendering
and Inpainted Images

Collect Images Using
Gripper Camera

Train Object NeRF

NeRF

NeRF

Fig. 2. An illustration of our pipeline from beginning to end. We first train an object-level NeRF of a novel object (left). We then simultaneously erase
the object in question with an off-the-shelf inpainter (top) and leverage NeRF to render images of a new object in the same position as the original object
(bottom). We use the final synthetic dataset to train a new policy for the robot (right).

We test our method on a variety of real world tasks, and
achieve a 69.1% increase in success rate while rendering
synthetic data 3.83 times faster than the baselines.

To summarize, our contributions are as follows:
∙ We propose a fast and photorealistic image editing

framework to generate synthetic data that can be used
in robot policy learning to generalize to novel objects.

∙ We learn a NeRF of a novel object by using multi-view
images of the object captured using a robot arm.

∙ We edit videos of existing demonstrations by removing
the training object via in-painting and blending the
NeRF render of a novel object into the inpainted image
to generate a synthetic dataset for training the robot
policy.

∙ We demonstrate effective generalization on four diverse
tasks using the generated synthetic data for training.

II. RELATED WORKS

A. Imitation Leaning

Imitation learning is a common approach to creating
robotic policies. Several approaches have been proposed
that allow a policy to learn from existing successful tra-
jectories. [1, 9–11] introduce various methods that take
observations as input and predict actions. Of these, [1, 10]
are multi-input models that input values from different types
of data at the same time. [12–15] go a step further and use
an expert to actively correct the policy when as it executes
trajectories. [16–19] take initial demonstrations and learn a
reward function which subsequently trains a reinforcement
learning policy.

B. Neural Radiance Fields (NeRFs)

In recent years, there has been a surge in research on
NeRFs in both computer graphics and robotics. [20–24] are
all NeRF approaches that are capable of rendering high
resolution images in real time. Other methods focus on
enhancing the robustness of NeRF models against real-world
constraints, such as a limited number of images [25], camera
pose noise [26], and glare [27]. Finally, other novel-view

synthesis techniques [28–31] remove the traditional multi-
layer perceptron used to volume render images with other
trainable structures.

Within the context of robotics, NeRFs have been used for
robot navigation by creating a 3D map of the environment
[32]. [33, 34] combine NeRFs and reinforcement learning.
[35, 36] explored using robot arms for creating higher quality
NeRF models of objects. Conversely, several works have
explored using NeRF models for robot decision making,
including [37, 38] which creates accurate depth maps for
transparent images using NeRF models, and [39] which cre-
ates an object level NeRF, imagines a scene with the object in
a different place and queries a vision-language model (VLM)
for feedback. Finally, [40] adds noisy viewpoints along a
demonstration trajectory and take corrective actions to make
a more robust behavior cloning model, and [41, 42] combine
structure from motion and NeRFs.

C. Synthetic Data in Robotics
Creating synthetic data for robot learning is a popular

paradigm for training data hungry machine learning mod-
els. [43, 44] champion creating digital twins of the current
robot environments and running the robot in these simula-
tions. [45] go a step further and automate the exploration
of real-world environments to create the high-fidelity digital
twin. [32] combine a simulator with a NeRF model to create
a photorealistic policy that could bridge the sim-to-real gap.

Another direction for using synthetic data is using dif-
fusion models in robotics. [1–5] use diffusion models to
randomize the texture of objects and swap objects in a
scene. [46, 47] use an action-conditioned diffusion model to
simulate synthetic videos of a robot performing a task. [48]
use a text-to-image diffusion model to synthesize a goal
image of objects in a desired location for a goal conditioned
reinforcement learning model to subsequently rearrange. [12]
uses diffusion to model expert online corrections.

III. PRELIMINARIES

Imitation Learning. In imitation learning, we assume a
premade list of 𝑁 expert trajectories 𝐷 =

{

𝜏𝑖
}𝑁
𝑖=1 where each

trajectory consists of state-action pairs 𝜏𝑖 = {(𝑠𝑘, 𝑎𝑘)}𝐾𝑘=1. In



Fig. 3. Our setup. We have two Realsense D435 cameras, angled parallel
to the table. The robot arm is an UR5e from Universal Robotics.

visual imitation learning, we assume access to 𝑛 cameras
where each contributes an image to the state. Thus, our state
can be denoted as 𝑠𝑘 = (𝐼1, 𝐼2, ..., 𝐼𝑛) where 𝐼𝑘 is an image.
In vanilla behavior cloning, the policy 𝜋 is trained offline and
learns a mapping between states and actions from our expert
dataset by minimizing the loss (𝜃) = 𝔼(𝑠,𝑎)∼𝐷 [𝓁 (𝜋(𝑠), 𝑎)]
for a given distance metric 𝓁.
Neural Radiance Fields. NeRF is a method used for
rendering novel views of a scene or object. Formally, we
assume a dataset of images and corresponding camera poses
𝐷 = {(𝐼𝑘, 𝑇𝑘)}𝐾𝑘=1 where 𝑇𝑘 ∈ SE(3) and 𝐼𝑘 ∈ ℝ𝑤×ℎ×3. At
test time, we are able to render a photorealistic view at an
unknown pose 𝑇 through volumetric rendering. The result is
a photorealistic image of a given scene through querying the
NeRF model with a requested camera pose.

IV. OUR APPROACH: NERF-AUG

An illustrative overview of generating synthetic data using
our proposed NeRF-Aug approach is shown in Fig. 2. First,
we capture multi-view images of a novel object and learn a
corresponding NeRF model. Next, we use the robot arm’s
gripper position to calculate the camera pose at each image
in our trajectory, and we use these to query the NeRF model
to render an object-level image at the same position and
orientation as our original object in the training example.
Then, we combine the NeRF rendering and the original
image to create a new synthetic image of the robot handling
a different object. Finally, we train our policy on this new
dataset and evalaute it on a task consisting of the new object.

A. Creating a NeRF model of the Novel Object

Given a novel object for which there exists no training
data, we train a NeRF model for this object. Using a gripper
mounted camera, we are able to collect a dataset of image-
pose pairs

{

(𝐼𝑘, 𝑇𝑘)
}𝑀
𝑘=1 by moving the gripper to various

viewpoints both close and far away from the novel object.
We use these images to train a NeRF model for the object.
We found that due to real-world noise, our NeRF renders
came out blurry from the millimeter-level imprecision in our
measurements. To account for this, we used NerfStudio’s [49]
Nerfacto model, which refines the camera intrinsic and
extrinsic parameters of all images to denoise measurements.

Fig. 4. A top-down view of the objects used in our real-world study. We
used a variety of common household items of varying shapes, sizes and
colors to show several kinds of generalization.

B. Calculating Camera Pose relative to Object
Our method relies on accurately rendering a new object

in the same position as the original training object at each
frame. If the position of the object is not known ahead of
time, the pose of the object can be determined by using the
built-in grasp detector of a robot’s gripper. The pose of the
gripper at the first frame that the object is grasped is the
same as the pose of the object at the start of the trajectory.
We show in Section V-F that using the gripper for calculating
the object pose does not significantly decrease the success
rate. Once grasped, we assume that the object does not move
with respect to the gripper.

Once we know the object pose, we need to find the camera
position relative to the object. Using the gripper position with
respect to the world given by 𝑇gripper(𝑡) ∈ SE(3), we are able
to find the camera-to-world matrix of the gripper camera.
We multiply the position of the gripper by the offset of the
camera from the gripper center

𝑇camera-to-world(𝑡) = 𝑇gripper(𝑡) ⋅ 𝑇camera-offset. (1)

We have that the relative position of the camera with respect
to the object coordinate system is denoted by

𝑇camera-to-object(𝑡) = 𝑇 −1
object-to-world(𝑡) ⋅ 𝑇camera-to-world(𝑡). (2)

If the object is already grasped, the relative position of the
camera and the object stays the same, denoted by

𝑇camera-to-object(𝑡) = 𝑇camera-to-object(𝑡grasp) for 𝑡 ≥ 𝑡grasp. (3)

C. NeRF Renderings
For each frame in the trajectory, we produce a rendering of

our novel object at the same position and orientation as the
original object by plugging our camera-to-object matrix into
the NeRF model, 𝐼NeRF = NeRF_Render

(

𝑇camera-to-object(𝑡)
)

.
Because we are only interested in the novel object rendered
from the NeRF and do not need the background of the NeRF
renderings, we find a mask for the object as 𝑀NeRF.

D. Combining NeRF Renderings and Original Image
Once we have the NeRF rendering of the new object and

the original image, we need to combine these two images.
Our new object is potentially smaller than the original object,
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Fig. 5. Comparison of inpainting results when replacing the original object with various objects in our training set. Instruct Pix-to-Pix and GenAug create
images that show a new object, but do not recreate our specific object with appropriate dimensions and texture, this generally causes these methods to fail.
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Fig. 6. Where the robot is initialized and the final state of the environment
for each of our tasks.

so we cannot simply copy over all the object pixels from
the NeRF rendering onto our original image. If we were to
do so, pixels from the original object could still remain in
our new synthetic image because our new object does not
completely cover the original one. Thus, we choose to erase
the original object using an off-the-shelf object eraser. To do
this, we use a pretrained Segment-Anything model [50] to
segment the original object, Cutie video object tracker [51] to
track the segmentation mask through the video frames, and
ProPainter [52] to erase the object from the image using the
segmentation mask. This results in a frame where the original
object is removed from the frame and only the background
objects/scene remains. From there on, we blend the object
pixels from the NeRF renderings onto the image where the
object was removed. We combine 𝐼NeRF and 𝐼no-object to get
a new image with the novel object at the same pose as the
original object while still keeping the background of the
original image. This is done by computing

𝐼final = 𝐼NeRF ⊙𝑀NeRF + 𝐼no-object ⊙
(

1 −𝑀NeRF
)

. (4)

These frames and corresponding actions can then be trained
using a behavior cloning model and run on a scenario
involving the new object.

V. EXPERIMENTS

We test our method on 4 real-world tasks: grasp, pick and
place, pick up, and drop. In grasp, place and place, and pick
up, we swap the object that is grasped by the gripper. In drop,
we switch the object that we drop a cup onto.

A. Our Setup
In our real-world experiments, we use a Universal Robotics

UR5e robot arm with a Robotiq-85 gripper. The arm
is equipped with two Realsense D435 cameras with one
mounted to the front of the gripper and the other mounted
to the back (see Fig. 3). We run all experiments on a
single Nvidia RTX A4000 GPU. We train the NeRF models
with 300 images of resolution 480×640 that are taken with
the robot arm, parallel to the ground. We use the default
Nerfacto model from Nerf-Studio for training without any
hyperparameter tuning.

For our behavior cloning model, we use BAKU [10].
The model takes image inputs from both gripper cameras
to predict the next action for the robot to take. We do not
allow BAKU to access gripper position for any of the trials.
For the drop, pick and place, and pick up tasks, we add color
jitter, which is necessary due to auto-exposure and shadows.

B. Baselines
While there has been substantial work with diffusion-based

models in robot data augmentation [1–5], to the best of our
knowledge, we are only aware of one project that made their
augmentation code available to the public: GenAug [2]. As
such, we are only able to compare to GenAug’s diffusion
approach. We also compare to Instruct Pix-to-Pix [53],
where we prompt the model to edit the image by placing
a novel object at the same position as the original object.

C. Real World Tasks
For pick and place, our initial object is a stapler which

is grasped, lifted into the air, and placed on a white plate
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Fig. 7. A comparison of data augmentation results for the “pick and place” task. The top shows the original trajectory. Below that we show three methods
that generate an expert synthetic trajectory for two novel objects (plastic bottle on the left, remote on the right). The last row ground-truth trajectories are
created by swapping the original object (stapler) with these novel objects in the real world. GenAug is effective at swiping the texture of the object, but
the color stays consistent with the original object. Instruct Pix-to-Pix is better at switching the color but also heavily changes the shading. Our method
creates nearly identical trajectories to those collected in the real world.

TABLE I
TASK SUCCESS RATES FOR NOVEL OBJECTS (↑)

Grasping Pick and Place Drop Cup Pick Up

Methods Screwdriver Hammer Pliers Bottle Remote Eraser Spatula Green Plate Book Pan White Box

Ours 100% 90% 80% 100% 70% 40% 50% 100% 90% 100% 100%
Default 0% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0%
GenAug 0% 0% 0% 0% 50% 10% 0% 0% 0% 40% 60%
Instruct Pix-to-Pix 0% 40% 30% 10% 0% 0% 0% 40% 0% 0% 30%

about 2 feet to the left of the stapler. An attempt is deemed
successful if the object is released onto and stays on the
plate. Our new objects consist of a bottle of lotion, a small
remote, a dry-erase eraser, and a wooden spatula. Collecting
the data requires 1.6 hours.

For pick up, our initial object is a dispenser bottle that
was grasped and lifted in the air. Success is determined if the
object was not in contact with the table and stayed steady
within the gripper. Our novel object is a white cardboard
box. The data is collected in 1.2 hours.

For grasp, our initial object is a whiteboard eraser that is
grasped. Success is determined by if the object is grasped and
tight so that it could not move. Our novel objects include a
small hammer, an electric screwdriver, and pliers. Collecting
the data takes 1.4 hours.

For drop, we drop a blue cup onto a flat object. Success
is determined if the cup is successfully dropped on top of
the object in question. Our initial object is a box that the
robot would drop this cup onto. Our novel objects include a
small black frying pan, a green plate, and a blue book. We
collect the necessary data in 1.1 hours.

We show examples of start and end states for these 4
tasks in Fig. 6. We show all objects in Fig. 4. For each

task, we create 200 trajectories using a hard coded expert
that has access to the position of objects. To add variation
to trajectories, we add seeded random noise to the output of
this expert. For re-rendering, we start out with the ground
truth object pose instead of calculating it.

D. Comparison to Baselines

As seen in Table I, our method consistently outperforms
other methods on all four tasks. Fig. 7 and Fig. 5 demonstrate
that by leveraging the photorealism of a NeRF blended with
inpainted background, our method is able to create synthetic
data with the same geometry and color as real-world data of
a different object.

In contrast to our method, GenAug and Instruct Pix-
to-Pix require intensive prompting to achieve a realistic
looking image. We observe that the two methods are highly
inconsistent from frame to frame because the random noise
inputted into the diffusion model that leads to very different
results each time a frame is rendered. The inconsistency
can be detrimental to multi-camera systems where GenAug
and Instruct Pix-to-Pix could render a completely different
looking object for each camera image at the same time-
step. Additionally, both GenAug and Instruct Pix-to-Pix



TABLE II
TIME TO CREATE NEW DATA IN HOURS (↓)

Grasping Pick and Place Drop Cup Pick Up

Methods Screwdriver Hammer Pliers Bottle Remote Eraser Spatula Green Plate Book Pan Box

Ours (first novel object) 5.2 5.3 5.0 5.3 5.3 5.7 5.3 4.3 4.2 4.6 4.0
Ours (subsequent novel objects) 2.1 2.2 1.9 2.5 2.5 2.9 2.5 2.0 1.9 2.3 1.8
GenAug 43.3 42.3 42.6 50.0 49.1 50.3 49.3 34.7 35.1 35.0 27.0
Instruct Pix-to-Pix 19.2 19.3 19.1 20.8 21.5 21.4 20.9 16.8 16.9 16.7 14.5

TABLE III
BREAKDOWN OF HOURS TAKEN FOR EACH PART OF

OUR METHOD AVERAGED PER NOVEL OBJECT

NeRF Segmentation NeRF
Dataset Training + Object Eraser Rendering

Grasp 0.69 3.06 1.37
Pick And Place 0.90 2.83 1.64
Drop 0.74 2.34 1.30
Pick Up 0.62 2.20 1.13

seem to change the shading of the scene. Instruct Pix-to-
Pix especially makes the background of the frames the same
color as the object we prompted for.

Despite GenAug explicitly switching the texture of the
object, many of the renders came out with an object that
was the same color as the original object. We also notice that
GenAug inpaints a new object with the exact geometry as the
original object, which can be problematic because the new
object is usually slightly bigger or smaller than the original
one. This behavior also explains why GenAug works most
effectively on picking and placing a remote which has the
same dimensions and color as the original object (stapler).
Finally, we argue that a major drawback of diffusion models
in general is that they are not trained to render objects that
appear very close to the camera. Gripper camera robotic
systems, like our setup, will move the camera to only a few
inches away from the object it is interacting with. Often only
part of the object is in frame at that distance. We believe the
camera was too close to the object for GenAug and Instruct
Pix-to-pix to synthesize a recognizable bottle or remote in
Fig. 7, especially in the later frames which look the most
unrecognizable.

E. Data augmentation speed
We show that our method is significantly faster than

other methods, as seen in Table II. Existing diffusion-based
methods are slow because diffusion models innately require
running the same network many times for a single frame
whereas ours runs only once per frame. On the other hand,
because our image resolution is only 180×180 pixels, our
NeRF model is actually able to render at twice the fps as
the original video. Note that our times are doubled because
we used a two-camera system, so for a typical single-camera
system, we expect our numbers to be half of what we report.
We also notice that the majority of the time taken was
from the segmentation and object eraser component (refer
to Table III). This module only needs to run once per task
as opposed to once per novel object because it deals with

TABLE IV
ABLATION ON SUCCESS RATES WITH INFERRING

AND NOT INFERRING OBJECT POSE

Pick and Place

Methods Bottle Remote Eraser Spatula

Known Object Pose 100% 70% 40% 50%
Inferred Object Pose 70% 50% 30% 70%

erasing the original object in the training videos which is
shared across all novel objects. In Table II, we show the time
taken including the segmentation and object eraser (‘first
novel object’) and excluding this component (‘subsequent
novel objects’). We measure all times on a single Nvidia
RTX A4000 graphics card.

F. Is Ground-truth Object Position necessary?

Often, it is hard to precisely estimate the position of
objects in robot demonstration data. As mentioned in Sec-
tion IV-B, one way to estimate the object position is by
recording the gripper position at the time the object was
grasped as the starting object position. We conduct an abla-
tion study on the pick and place task to show that estimating
object pose by using a gripper is a reasonable approximation
and does not immensely deteriorate the quality of the policy
compared to using ground-truth object position. We report
results in Table IV. Interestingly, the performance with
the wooden spatula actually increases, likely because using
the gripper to infer the object pose is more accurate than
measuring it beforehand.

VI. CONCLUSION

We introduce NeRF-Aug, a data augmentation framework
for gripper-camera robotic systems. Our method leverages
the photorealism of NeRFs to replace training objects in
expert demonstrations with novel objects. This allows us to
create synthetic training data for novel objects that is virtually
indistinguishable from data that would otherwise require a
human to demonstrate. Through extensive quantitative and
qualitative experiments on four real-world tasks with 11 dif-
ferent objects, we show that policies trained using NeRF-Aug
data are consistently more successful at tasks involving novel
objects than the baselines, while only requiring a fraction
of the time to collect. Future research could explore other
novel-view synthesis methods such as Gaussian Splatting and
Plenoxels to generate similar augmentation frameworks.
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